
Modeling with Mocking
Jouke Stoel∗, Tijs van der Storm∗† and Jurgen Vinju∗‡

∗CWI, Amsterstam, †University of Groningen, Groningen, ‡TU/e, Eindhoven,
The Netherlands

{j.stoel, t.van.der.storm, jurgen.vinju}@cwi.nl

Abstract—Writing formal specifications often requires users to
abstract from the original problem. Especially when verification
techniques such as model checking are used. Without applying
abstraction the search space the model checker need to traverse
tends to grow quickly beyond the scope of what can be checked
within reasonable time.

The downside of this need to omit details is that it increases the
distance to the implementation. Ideally, the created specifications
could be used to generate software from (either manually or
automatically). But having an incomplete description of the
desired system is not enough for this purpose.

In this work we introduce the REBEL2 specification language.
REBEL2 lets the user write full system specifications in the form
of state machines with data without the need to apply abstraction
while still preserving the ability to verify non-trivial properties.
This is done by allowing the user to forget and mock specifications
when running the model checker. The original specifications are
untouched by these techniques.

We compare the expressiveness of REBEL2 and the effective-
ness of mock and forget by implementing two case studies: one
from the automotive domain and one from the banking domain.
We find that REBEL2 is expressive enough to implement both case
studies in a concise manner. Next to that, when performing checks
in isolation, mocking can speed up model checking significantly.

Index Terms—formal specifications, bounded model checking,
compositional reasoning, smt solving, mocking, lightweight for-
mal method

I. INTRODUCTION

Formal specifications combined with model checking have
been shown to be very effective in capturing and verifying
desired system behavior. However when applying model
checking, the user is forced to think about the potential state
space the model checker needs to traverse [1]. Not taking this
into sufficient consideration will lead to a state space that is
too large to check within reasonable time.

Applying abstraction is one of the most used techniques to
overcome the state space explosion problem [2], [3]. Coming
up with an abstraction that models the problem in sufficient
detail but is abstract enough such that it can be model
checked is in most cases left up to the specifier. Because
of this need of omitting details the specifications become too
abstract. Translating such abstract specifications to code, either
automatically or manually, becomes very difficult since the
software that ultimately needs to run needs to contain all the
details.

The methods that do allow to specify systems up till the
level of executable code such as Event-B [4] often require
proofs that show that a refinement of an abstract specification

is indeed true to its abstraction. Writing such specifications
and proofs can increase the required effort both in time and
expertise [5]. This effort can be considered as too high and
might be one of the reasons that industry adoption of these
techniques, aside from safety critical systems, is as of yet still
low.

In this work we approach this problem from another angle, by
combining formal specifications, model checking and mocking.
Mocking is a well known testing technique from object-
oriented programming where mock objects are created to
replace domain code with a dummy implementation for the
purpose of emulating its behavior [6]. These mock objects
are passed to the objects under test to allow for the testing
of features in isolation with respect to the rest of the system.
Similarly, we propose to use mock specifications to replace
specified behavior with a dummy specification for the purpose
of model checking. This allows us to perform model checks
for parts of the system, isolated from other specifications.
Although this compositional reasoning technique is inherently
unsound, it can still be of value. It allows the user to make a
pragmatic tradeoff between completeness of the check versus
timely feedback from the checker. This type of trade-off is
not new. For instance, the lightweight formal methods tool
Alloy is based around the “small-scope” hypothesis which says
“many bugs are found in a small scope” favoring partiality over
completeness as well, although in a different dimension [7].

We implement this mocking technique in REBEL2, a
lightweight formal specification method.1 REBEL2 specifica-
tions use the notation of state machines with data and guarded
transitions. Assumptions and assertions can be expressed using
Linear Temporal Logic (LTL). To check assertions REBEL2
uses a bounded model checking technique. This is realized
by translating the specifications to the relational algebra of
ALLEALLE [9] which in turn translates it to SMT and uses
the Z3 SMT solver [10].

When model checking, the user can mock parts of the
specifications by using two language constructs: forget and
mock. The forget construct slices out data and constraints on this
data. The mock construct replaces a specification entirely with a
mock specification. Like mock objects, mock specifications can
emulate parts of the original specification in isolation, which
in turn can potentially reduce the state space considerately.
Although we introduce the constructs forget and mock in

1The term lightweight formal method was coined by Daniel Jackson in
2001 [8]. It describes methods with emphasis on partiality (partiality in
language, modeling, analysis and composition).

spec Account
nr: AccountNumber, balance: Integer, openedOn: Date;

init event open(nr: AccountNumber, openedOn: Date)
post: this.balance’ = 0, this.nr’ = nr,

this.openedOn’ = openedOn;

event deposit(amount: Integer)
pre: amount > 0;
post: this.balance’ = this.balance + amount;

event withdraw(amount: Integer)
pre: amount > 0, this.balance >= amount;
post: this.balance’ = this.balance - amount;

event payInterest(rate: Integer)
post: this.balance’ =

this.balance + ((this.balance * rate) / 100);

final event close()
pre: this.balance = 0;

event block()
event unblock()
final event forceClose()

states:
(*) -> activation: open;
activation -> opened: deposit;
opened -> opened: deposit, withdraw, payInterest;
opened -> blocked: block;
blocked -> opened: unblock;
blocked -> (*): forceClose;
opened -> (*): close;

Listing 1: REBEL2 specification of an Account.

the context of the REBEL2 specification language, the ideas
are general and could be implemented in other state-based
techniques as well.

To test the expressiveness of REBEL2 and the effectiveness
of model checking with mocking we evaluate REBEL2 on two
different case studies, one from the automotive domain and
one from the financial domain.

To summarize, the contributions of our work are:
1) A description of the lightweight formal specification

language REBEL2 by example (Section II).
2) A formalization of the forget and mock constructs (Sec-

tion III).
3) A prototype implementation of REBEL2 and model check-

ing with mocking using forget and mock (Section IV).
4) An evaluation of the REBEL2 language and the forget

and mock constructs both in terms of expressiveness and
effectiveness (Section V).

We conclude our paper with a discussion of related work
(Section VI) and future work (Section VII)

II. REBEL2 BY EXAMPLE: MONEY TRANSFER

In this section we introduce REBEL2 by specifying a simple
bank account state machine. REBEL2 is inspired by earlier
work. [11].

Accounts can be opened, and after an initial deposit, any
number of deposit, withdraw and pay interest events are
possible. An account can be temporarily blocked (e.g., in case
of suspicious transactions) and unblocked. When an account

waiting for
activation

open
opened

blocked

deposit

block unblock

deposit, withdraw, payInterest

close

forceClose

Fig. 1: UML Statechart visualization of an Account

is blocked, no transactions are allowed. Eventually an account
can be closed either normally or by force. Figure 1 shows a
visual representation of the above rules.

Listing 1 shows the REBEL2 specification of an account that
complies with the rules stated above. A REBEL2 specification
consists of four parts, fields, events, states, and assumptions.
We explain the first three below. Assumptions are discussed
further-on in the section.

Fields: Fields represent the internal state of a state
machine. The Account specification declares three fields: nr

, balance and openedOn. Fields can have primitive types, e.g.,
balance (of type Integer). But fields may also refer to other
REBEL2 specifications as a type, as is the case with the nr

field, which has type AccountNumber.
Events: Events define the business events and actions that

may be triggered on a state machine. In the Account example
there are eight. Events may have formal parameters (e.g., amount
in deposit and withdraw), and are (optionally) guarded by

preconditions. The effect of an event is specified in the form
of a postcondition where the next value of a field is accessible
by priming its name. For instance, the effect of withdraw is
defined as this.balance’ = this.balance - amount, effectively
decrementing the account’s balance.

States: The last section in Listing 1 defines the lifecycle
of an account, by defining state transitions of the form
“from -> to: via,...”, where via is a list of events declared earlier.
The special marker (*) is used to indicate initial and final states.
Events from the initial state need to be marked as initial (cf.
init event open), and events to the final state have to be marked
final (cf. close and forceClose).

Checking assertions: Now that we have specified our
Account we can validate its behavior by checking the safety
property that an account can not be overdrawn. For this,
REBEL2 supports assertions. The above property is expressed
as follows:
assert CantOverdrawAccount = forall ac:Account |
always (ac is initialized => ac.balance >= 0);

Assertions are expressed using Linear Temporal Logic (LTL)
expressions. REBEL2 supports the standard LTL operators
always, eventually, next and until. The CantOverdrawAccount

assertion can thus be read as follows: for all possible execution
paths, all initialized accounts have a non-negative balance.

REBEL2 uses bounded model checking. To check the above
property it is required to specify the bound in terms of i) the
number of instances (e.g., Account objects) that take part and
ii) the maximum search depth.

The number of instances is specified using the config

directive:
config Basic = ac: Account is uninitialized,

aNr: AccountNumber, dt: Date;

A configuration defines all the specification instances that can
participate during model checking. This configuration specifies
that there are three instances: an Account, an AccountNumber

and a Date. All instances in a configuration are bound to a
label (i.e. Account is bound to ac, AccountNumber to aNr and Date

to dt). The config statement supports constraining the state and
field values of an instance. In the example the required state
of the Account instance ac is set to uninitialized. The state of
the AccountNumber and Date instances are not specified and thus
are left open for the underlying model checker to decide.

The maximum search-depth is specified when invoking the
verifier through the check command:
check CantOverdrawAccount from Basic in max 10 steps;

This instructs the model checker to try and find a counter-
example to the property CantOverdrawAccount, starting in the
Basic configuration, with a maximum search depth of 10
consecutively triggered events.

Forget: Running the model checker on the above check

command, results in a time-out, because the AccountNumber

and Date specifications (not shown here) are complex state
machines. As a result the state space that the checker must
traverse is too large to find a counter example within the default
30 second time-out.

The forget modifier can be used to abstract from the nr and
openedOn fields in the Basic configuration, as follows:
config Basic = ac: Account forget nr, openedOn
is uninitialized;

The result is that the field definitions and all constraints
referencing these fields are removed resulting in a smaller (but
well-formed) specification. Since the fields that reference the
AccountNumber and Date specifications have been removed, the
instances of these specifications can also be removed from the
configuration (cf. aNr and dt).

Running the model checker again now results in a trace, a
counter example for our assertion. The trace shows an execution
path for which the assertion does not hold. In other words, it is
possible to overdraw the account according to the specification.
The following execution trace is shown: 2

Counter example found:
1 (INIT): ac (Account) is ‘uninitialized‘ :
--> Raised open() on ac (Account)

2: ac (Account) is ‘activation‘ : balance = 0
--> Raised deposit(amount = 1) on ac (Account)

3: ac (Account) is ‘opened‘ : balance = 1
--> Raised payInterest(rate = -101) on ac (Account)

4 (GOAL): ac (Account) is ‘opened‘ : balance = -1

2Traces can be shown both textually and visually. In this paper they are
listed in their textual notation.

spec Transaction
frm: Account, to: Account, amount: Integer;

init event create(frm: Account, to: Account, amt: Integer)
pre: frm != to, amt > 0;
post: this.frm’ = frm, this.to’ = to,

this.amount’ = amt;

final event book()
pre: this.frm.withdraw(this.amount),

this.to.deposit(this.amount);

states:
(*) -> created: create;
created -> (*): book;

Listing 2: Specification of a Money Transaction.

Examining the trace shows the root of the problem: the rate

parameter of the payInterest action can be negative (see the
third step in the trace). A way to prevent this is by adding
the constraint rate >= 0 to the precondition of the payInterest

event:
event payInterest(rate: Integer)
pre: rate >= 0;
post: this.balance’ =
this.balance + ((this.balance * rate) / 100);

Rerunning the model checker after this fix yields the
desired result: no counter example is found given the specified
configuration and search depth.

Synchronization: To illustrate synchronization between
state machines, Listing 2 shows the specification of a
Transaction entity which captures a transfer of money between
two accounts. This is modeled in the book event, which triggers
the withdraw and deposit events on the frm and to accounts,
respectively. Semantically, all three events happen as a single
atomic step: either all three succeed, or none.

To check whether it is possible to perform such a booking
a simulation is run. The difference between a check and a
simulation is that the model checker is not instructed to look
for a counter example, but to find a witness of the assertion
of interest instead.

Here’s the assertion of interest:
assert CanBookATransaction =
exists t: Transaction | eventually book on t;

The assertion CanBookATransaction states that at some point in
time there exists a Transaction on which the event book has
been triggered.

Just like with check, a configuration specifies the elements
participating:
config BasicTrans = t: Transaction is uninitialized,
ac1,ac2: Account, an1,an2: AccountNumber,
d1,d2: Date;

We use the run command to have the model checker find a
witness:
run CanBookATransaction from BasicTrans in max 5 steps;

Executing this command causes a time-out because, like
before, the state space is too large to check due to the inclusion
of the detailed AccountNumber and Date specifications. Instead of

spec MockAccount
balance: Integer;

internal event withdraw(amount: Integer)
pre: amount > 0;
post: this.balance’ = this.balance - amount;

internal event deposit(amount: Integer)
pre: amount > 0;
post: this.balance’ = this.balance + amount;

assume PositiveBalance =
always forall a:MockAccount | a.balance >= 0;

states:
opened -> opened: withdraw, deposit;

Listing 3: A mock specification of the Account of Listing 1

slicing out fields from the participating instances (using forget),
we want to keep the interaction between the Transaction and the
two accounts in place since this is the essence of a transaction.
To realize this, REBEL2 offers the mock operator to substitute
simpler entities for certain instances in a configuration.

Mocking: Similar to mock classes in object-oriented
programming, mocking in REBEL2 entails writing a compatible
specification that acts as a drop-in replacement for another
specification. A potential mock specification of Account is
shown in Listing 3.

This MockAccount contains two new concepts, internal events,
and assume. The internal modifier signals to the model checker,
that the event can not be triggered in isolation, but it can
occur as part of a synchronizing event, like book in Transaction.
Assumptions are invariants that the model checker assumes to
always hold, expressed using the same LTL and FO formulas
used in assertions. For instance, the PositiveBalance assumption
in MockAccount allows the model checker to assume that balance
is always non-negative, an assumption that we have checked
earlier on actual accounts.

Mock specifications must be compatible with the mocked
specification in that it needs to support the same events
(including their signature) as the original, restricted to the
events that are potentially triggered by the check. For instance,
MockAccount is a valid mock specification for Account because it
supports both events which can be triggered by the book event
of Transaction, namely withdraw and deposit.

The mock specification can now be used in the definition
of a configuration and run invocation:
config SimplifiedTrans =
t: Transaction is uninitialized,
ac1,ac2: MockAccount mocks Account;

run CanBookATransaction from SimplifiedTrans in max 5 steps;

Running the model checker returns the following witness
showing a trace where a Transaction is booked:
Witness found:
1 (INIT): ac1 (Account) is ‘opened‘ : balance = 7
ac2 (Account) is ‘opened‘ : balance = 1
t (Transaction) is ‘uninitialized‘ :
--> Raised create(from = ac1, to = ac2, amount = 3) on t

(Transaction)
2: ac1 (Account) is ‘opened‘ : balance = 7

ac2 (Account) is ‘opened‘ : balance = 1
t (Transaction) is ‘created‘ : from = ac1, to = ac2,
amount = 3

--> Raised book() on t (Transaction) : affected instances
{t,ac2,ac1}

3 (GOAL): ac1 (Account) is ‘opened‘ : balance = 4
ac2 (Account) is ‘opened‘ : balance = 4
t (Transaction) is ‘finalized‘

Unsoundness: In this section we have introduced the
formal modeling language REBEL2 and shown how the forget

and mock constructs can be used to check and simulate properties
of interest. Note, however, that both forget and mock are
unsound: neither construct guarantees that the abstractions
they create are equivalent with the original specification. This
is by design. However, just like the “small scope” assumption
used in tools such as Alloy, we conjecture that, nevertheless,
it is possible and convenient to check non-trivial, useful
properties, in limited amounts of (solving) time. This gives
the user additional flexibility and freedom in defining checks
and simulations, without immediately running into time-outs.
As such, forget and mock introduce a pragmatic middle-ground
between full formal verification and traditional testing as is
practiced in many organizations.

III. FORMALIZATION

To define the semantics of forget and mock we need to
define the semantics of REBEL2 as a framework. For this we
will use the logic proposed in State / Event Linear Temporal
Logic (SE-LTL) [12]. This logic contains both the notion of
states and events and operates over a Labeled Kripke Structure
(LKS). An LKS is a 7-tuple (S, Init,P,L ,T,Σ,E) where S is
a finite set of states, Init ⊆ S is the set of initial states, P
is a finite set of atomic propositions, L : S→ 2P is a state
labeling function from states to atomic propositions, T ⊆ S×S
is the transition relation, Σ a finite set (or alphabet) of events
and E : T →

(
2Σ \{ /0}

)
the transition labeling function. We

will write s E−→ s′ to denote a transition where (s,s′) ∈ T an
E ⊆ E(s,s′). If E is a singleton set we will just write s e−→ s′.
The transition relation T is assumed to be total meaning that
every state has a successor (no deadlock can occur).

A path π = 〈s1,e1,s2,e2,s3, . . .〉 is an infinite, alternating se-
quence of states and events in which for each i≥ 1,si and si+1 ∈
S,ei ∈ Σ and si

ei−→ si+1 ∈ E . All paths together make up for
the language of an LKS written as L(M).

A. REBEL2 Specification to LKS

To map REBEL2 specifications to an LKS we use the
following translation. The set of atomic propositions P contains
all fields and possible values of a REBEL2 specification R . For
the sake of our formalization we will restrict the Integer and
String domains to a bounded set of values where the bounds
are arbitrarily chosen. This way we restrict the set of states
S and the set of atomic propositions P to be finite. The state

as defined in a REBEL2 specification is also considered part
of the set of atomic propositions and should not be confused
with the state set S of the LKS. Also the parameters of the
defined events in R are considered as being part of the set of
atomic propositions.

The state labeling function L maps values to fields for each
possible s ∈ S. Σ contains all event labels as defined in R . We
derive E by calculating for each possible s,s′ ∈ S and event
e∈ Σ the enabled events by checking whether the preconditions
of e hold in L(s) and whether the postconditions hold in L(s′).

B. Semantics of the Forget Operator

Our formalization of forget maps to the formalization of
abstraction of an LKS as defined by Chaki et al. [12]. We will
recall the notion of abstraction from [12] to show the meaning
of forget.

Let M = (SM, InitM,PM,LM,TM,ΣM,EM) and
A = (SA, InitA,PA,LA,TA,ΣA,EA). A is considered an abstrac-
tion of M (written AvM) iff:

1) PA ⊆ PM .
2) ΣA = ΣM .
3) For every path π = 〈s1,e1,s2,e2, . . .〉 ∈ L(M) there exists

a path π′ = 〈s′1,e′1,s′2, . . .〉 ∈ L(A) such that, for each
i≥ 1,e′i = ei and LA(s′i) = L(si)∩PA.

This is also known as variable hiding since an abstraction A
contains a subset of the propositional variables of M while
still accepting the original language of M.

This is also the essence of the forget operator. It will hide
all atomic propositions bound to the field that it is instructed
to forget (e.g., every reference that maps a value to the field
is removed from the set P). All constraints in the pre- and
postconditions of the event referencing the forgotten field can
be considered to evaluate to true and thus can be removed.

C. Semantics of the Mock Operator

To define the meaning of the mock operator we must first
define the notion of parallel composition as defined by Chaki
et al. [12]. We recall it here for clarity.

Parallel composition is defined via shared events. It is not
allowed to share variables between two LKSs. This facilitates
the possibility to perform compositional reasoning.

Let M1 = (S1, Init1,P1,L1,T1,Σ1,E1) and
M2 = (S2, Init2,P2,L2,T2,Σ2,E2) then two LKSs are con-
sidered compatible if (1) they do not share any variables:
S1∩S2 =P1∩P2 = /0, and (2) their parallel composition yields a
total relation (so that no deadlock can occur). Thus, the parallel
composition can be defined as: M1 ‖ M2 = (S1× S2, Init1×
Init2,P1∪P2,L1∪L2,T,Σ1∪Σ2,E) where (L1∪L2)(s1,s2) =

L1(s1)∪L2(s2) and T and E are such that (s1,s2)
E−→ (s′1,s

′
2)

iff E 6= /0 and one of the following holds:

1) E ∈ Σ1 \Σ2 and s1
E−→ s′1 and s2 = s′2

2) E ∈ Σ2 \Σ1 and s2
E−→ s′2 and s1 = s′1

3) E ∈ Σ1∩Σ2 and s1
E−→ s′1 and s2

E−→ s′2
To put it on other words, LKSs synchronize on shared events

while proceeding independently from each other.
Communication between REBEL2 machines operates in the

same manner. The difference is that REBEL2 allows users to
define which events must synchronize instead of relying on the
mechanism of shared labels. Shared event parameters become
part of the local variables of both machines to maintain the

Prepare Normalize Translate AlleAlle Interpret
Specifications Visualization

Fig. 2: Overview of the model checking processing pipeline
for REBEL2 specifications. The white parallelograms are part
of REBEL2. The gray box is an external process.

separation of variables and allow for compositional reasoning.
State and field queries (between two specifications) are also
mapped to shared events.

We also use this notion to define the mock operator. Assume
we have two LKSs, M1 and M2, having the same signature as de-
scribed earlier. Furthermore assume that M1 and M2 have shared
events: Σ1∩Σ2 6= /0. An LKS M3 = (S3, Init3,P3,L3,T,Σ3,E)
mock M2 iff (1) the parallel composition of M1 and M3 is valid
(no shared variables, composition yields a total relation) and (2)
M3 has the same shared events as M1 and M2: Σ1∩Σ3 =Σ1∩Σ2.
This means that all events that were synchronized in the original
composition, M1 ‖ M2 will synchronize in the abstracted
composition M1 ‖M3.

D. On the Logic of SE-LTL

Using the earlier definitions of LKS we use the definition
of State/Event Linear Temporal Logic (SE-LTL) as defined
by Chaki et al. [12]. This logic operates on both states and
events and has the following syntax: φ = p | e | ¬φ | φ∧ φ |
X φ |G φ | F φ | φ U φ where p ∈ P and e ∈ Σ. The operators
X (next), G (always), F (eventually) and U (until) have their
usual semantics,

Besides propositional constraints REBEL2 also allows for
first-order constraints like quantification (forall, exists) and
relational operators like membership (in). Given that REBEL2
only operates in a bounded setting (i.e. a bounded number
of machines and states) these operators can be translated to
propositional logic via known translations (i.e. [9], [13], [14]).

IV. IMPLEMENTATION

Performing a REBEL2 check (or run) follows a pipeline
described in Figure 2. This pipeline consists of four steps:
prepare, normalize, translate and interpret. The general scheme
is that we translate REBEL2 specifications to the relational
algebra of ALLEALLE [9] which in turn translates its relational
algebra to an SMT formula and calls the Z3 SMT solver [10]
to check whether the formula is satisfiable. If it is satisfiable
the result is interpreted back into the domain of REBEL2,
via ALLEALLE, where it is presented as an interactive visu-
alization or textual trace to the user. REBEL23, the language
and the transformations needed for model checking, are all
implemented using the Rascal Language Workbench [15]. We
will discuss each step in more detail.

3See https://github.com/cwi-swat/rebel2/releases/tag/jan-2021.

https://github.com/cwi-swat/rebel2/releases/tag/jan-2021

A. Step 1: Preparation

The first step of the pipeline collects only those specifications
which are needed to check (or run) an assertion. As an example
we will use the check that was formulated earlier which we
recall here for readability:
check CantOverdrawAccount from Basic in max 10 steps;

This check references the CantOverdrawAccount assertion and the
Basic configuration. The Account specification references the
AccountNumber and Date specifications. To be able to perform
checks on a account we must therefore at least also include the
AccountNumber and Date specifications. Therefore the referenced
Basic configuration is declared as:
config Basic = ac: Account is uninitialized,

aNr: AccountNumber, dt: Date;

For each check or run that is performed a specialized module
is created during preparation. This module, using the syntax
of REBEL2 (meaning that it is itself a valid REBEL2 module),
contains exactly those specifications that are referenced in the
config and specs reachable from the check or run command
to be performed. This newly created module is self contained
meaning that it does not need any external dependencies (i.e.
imports) to be checked.

To be able to create a module that only contains those
specifications that are referenced a specification dependency
graph is built, which in turn is used to find all reachable
specifications. The reachability algorithm checks which speci-
fications are reachable from those specifications referenced in
the config statement. The found set of specifications contains
the minimally needed (transitive) dependencies. This set of
specifications, together with the check (or run) command
and referenced assert and config statements make up the
specialized check-module.

Applying Forget and Mock: During preparation the
execution of the forget and mock operators are also performed.
Both forget and mock manipulate the specification dependency
graph by removing those dependencies that are not needed any
more after applying forget and mock (see Figure 3). Applying
forget results in a subgraph of the original dependency graph
with edges removed (see Figure 3b). Applying mock results in a
graph that overlaps the original graph but also holds the newly
inserted mock specification (see Figure 3c). In both cases the
reachability analysis is performed again after the alteration of
the graph resulting in the minimal set of specifications that is
needed to perform the check or run command.

Next to altering the dependency graph both operators also
rewrite parts of the specification as well. Forget slices out the
field that is to be forgotten from the specification. It removes
both the field definition as well as all constraints with references
to the field in the pre- and postconditions of the events. This
is done via a standard data-flow analysis in which the use-
definition relation is traversed for the fields that need to be
forgotten.

Mock performs a rename on the specification that is config-
ured as an mock. The mock is renamed to the original (the
specification of which it is a mock). This renaming is necessary

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

(a) Original

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

(b) forget B

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

(c) E mock B

Fig. 3: Example of an specification dependency graph (a) and
the consequence of applying forget (b) and mock (c) operators.
The specifications in the grayed subgraphs are removed.

to make sure the new combination of specifications is well-
formed again since the unaltered specifications still reference
the original, non-mocked specification by name.

B. Step 2: Normalization

Normalization of a module entails three parts: (1) Inlining the
state definitions as local fields, (2) Adding frame conditions
to the events and (3) Adding a frame event. The result of
normalizing a REBEL2 specification is again a valid REBEL2
specification. Normalization consists of the application of
purely local transformations. Figure 4 shows the effect of
normalizing the (slightly altered) Transaction specification. We
will discuss every part separately.

Inlining State Definitions: As mentioned in the formaliza-
tion section III the states definition in a REBEL2 specification
becomes part of the local fields. A simple transformation is
performed on each specification that introduces a new field
state with a new type representing the states as defined in the
original specification. A new specification is added to represent
the new state type. Listing 4b contains an example of such
a new ‘state specification’ (line 18). The definition of such a
specification also introduces constant instances (CREATED and
BOOKED in our example). These constant instances are instances
of the TState specification that are implicitly part of each
config statement. They can be referenced as constants by other
specifications (e.g., see line 14 or 16 in Listing 4b). Constant
instances serve a similar purpose as enumeration types do in
other languages.

Next to the addition of this new ‘State’-type, the pre- and
postconditions of the events are strengthened with constraints
on the newly added state field. These constraints simulate the
states definition of the original specification. Lines 14 and 16
contain the constraints to simulate the states definition of the
defined Transaction.

Adding Frame Conditions: A known problem when
modeling behavioral systems declaratively is that a user must
not only state what changes, but also what does not change
otherwise the system might be under-constrained and thus start
to behave in an unexpected manner. To relieve the user of this
extra burden REBEL2 offers a simple heuristic; those fields
whose next value is not referenced in a postcondition will be

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer;
5
6 init event create(...) ...
7 final event archive() ...
8
9 event book()
10 pre:
11 this.frm.withdraw(this.amt),
12 this.to.deposit(this.amt);
13
14 states:
15 (*) -> created: create;
16 created -> booked: book;
17 booked -> (*): archive;

(a) Original specification.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6
7 init event create(...) ...
8 final event archive() ...
9

10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED];
17
18 spec TState[CREATED,BOOKED];

(b) Inlining the states definition.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6
7 init event create(...) ...
8 final event archive() ...
9

10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED],
17 this.amt’ = this.amt,
18 this.frm’ = this.frm,
19 this.to’ = this.to;
20
21 spec TState[CREATED,BOOKED];

(c) Adding frame conditions.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6
7 init event create(...) ...
8 final event archive() ...
9
10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED],
17 this.frm’ = this.frm,
18 this.to’ = this.to;
19
20 event frame()
21 post: this.amt’ = this.amt,
22 this.frm’ = this.frm,
23 this.to’ = this.to,
24 this.state’ = this.state;
25
26 spec TState[CREATED,BOOKED];

(d) Adding framing event.

Fig. 4: Result after each normalization step of the Transaction specification.

automatically added as frame condition. Listing 4c shows an
example of this. In the book event the frm, to and amt fields are
not referenced in the the postcondition. During normalization
constraints are added to frame the value of these fields in the
next state.

This is also where the init and final modifiers come into
play. Frame conditions are not added in events flagged with
these modifiers since this would lead to unsatisfiable constraints
(a variable can not have a value if the machine is not in an
initialized state).

Please note that there are cases where this heuristic fails to
add all needed frame conditions. For instance when a fields
next value is referenced in a postcondition but the formulated
constraint is under-constrained (resulting in multiple possible
values in the next step). Considering that mistakes are often
easily spotted during model checking and the fact that a user
can always add a custom frame condition to the postcondition
instead of relying on the automatic addition we feel that this
is less of a problem.

Adding Frame Event: REBEL2 allows checking multiple
instances of specifications at the same time. In each step
however, only one instance may make a step (or multiple if
the step entails synchronization of events). The other instances
must by definition keep their current values (see Formalization,
Section III). To facilitate this a local frame event is added to
every specification. This event is raised whenever the instance
is not (part of) the instance that makes a step. The frame event
frames all field values in the next state to the values of the
current state (see Listing 4d).

C. Step 3: Translation

After normalization the resulting specification(s) are trans-
lated to an ALLEALLE problem [9]. ALLEALLE is a relational
model finder which searches for satisfying relational instances
of a given relational problem.

Short introduction of ALLEALLE: ALLEALLE’s logic
combines relational algebra, first order logic and transitive

closure. ALLEALLE is similar to the relational model finder
Kodkod [16]. The difference is that ALLEALLE utilizes an SMT
solver instead of the SAT solver used by Kodkod. This means
that ALLEALLE can utilize a direct encoding of constraints
over integers and strings without needing a specialized boolean
encoding. ALLEALLE’s underlying logic is based on Codd’s
relational algebra [17] so that constraints on attributes (integer,
string, etc.) can be directly expressed using the selection
operator.

An ALLEALLE problem contains two parts: i) Relational
definitions and ii) Constraints on these relations. The definition
of ALLEALLE relations come from the relational model [18].
This definition prescribes that a relation contains a header and
a body. The header defines the attribute names and domains, the
body contains the (potential) tuples. ALLEALLE is bounded: a
relation cannot hold more or different tuples than described in
its upper bound and never less than those defined in its lower
bound.

The constraints are formulated using a combination of
relational algebra, first order logic and transitive closure. An
ALLEALLE problem is satisfiable if there is a valuation of each
relation such that both the tuple bounds and the constraints
hold. There can be multiple satisfying instances. Finding these
instances is performed by the ALLEALLE model finder.

Encoding REBEL2 specifications as ALLEALLE problems:
ALLEALLE, like Kodkod, is a general purpose model finder. It
does not offer built-in support for encoding transition systems.
To encode the transition system we use a similar encoding
as described by Cunha [19]. In essence it means that every
value that can change between each step in the transition
system is encoded as a ternary relation. For instance, the
balance of an Account can change in each step of the transition
system therefore the ALLEALLE relation representing this value
is defined as the ternary relation: Configuration x Account x

Integer. We use the term Configuration to describe the state of
the LKS as a whole since the term ‘State’ is highly ambiguous.
The Account relation holds all the instances of the Account that

are defined in the config statement.
Next to the Configuration relation there is the binary Step

relation which encodes the order of Configuration. The maximal
number of Configurations and Steps depend on the max steps

defined in the check or run command.
Field and event parameter cardinalities (optional, set or

scalar) are encoded as additional ALLEALLE constraints. All
the constraints of the pre- and postconditions of an event
definition are conjuncted to a single ALLEALLE formula per
event. The Step relation is used to encode the fact that there
can be only one event that is raised in every step (e.g., “for all
steps it must hold that there is only one raised event”). The
translation of assumptions and assertions also make heavily use
of the Step relation and the transitive closure of this relation to
encode the path reachability properties of the LTL expressions.

After the translation the translated problem is given to the
ALLEALLE model finder together with respective minimization
criteria to find a solution in the least number of steps. This
means that in the case that a counter example exists (or witness,
depending on the executed command) the model finder will
return a shortest path.4

D. Step 4: Interpretation of the Result

The last step of the model checking pipeline is the interpre-
tation of the result. If the ALLEALLE problem is not satisfiable
the user is prompted with the message that ALLEALLE can
not find a satisfying model. If this is the outcome of running a
check command it might mean that the checked assertion holds
but since the used model finding technique is bounded this is
not guaranteed.5

If the relational constraints of the generated ALLEALLE
problem are satisfiable, the results are interpreted back into
the domain of REBEL2 and presented to the user as a textual
or interactive trace. The interactive trace allows the users to
step through the found (counter) example.

V. EVALUATION

We evaluate both the expressiveness of REBEL2 and the
effectiveness of mocking for model checking by implementing
two case studies, one from the automotive domain, and one
from the financial domain.

A. Case Study – Exterior Lighting System

As part of the ABZ conference of 2020 the real-world case
study “Adaptive Exterior Light and Speed Control System”
(ELS and SCS respectively) was presented [20]. We have
implemented a part of the case study, consisting of a model of
the direction indicators and hazard warning lights system, to
compare the expressiveness, conciseness, and overall usability
of REBEL2 with others state-based implementations.6

4This is a usability feature. Shorter paths are often easier to explore and
comprehend when a bug is found.

5There still could potentially be a counterexample if the bounds would be
extended.

6See https://github.com/cwi-swat/rebel2/releases/tag/jan-2021 in folder
examples/paper/els for the encoding of the ELS case study in REBEL2.

TABLE I: SLOC comparison between different methods.

Method SLOC Included files

ASMeta [21] 361 CarSystem001
Event-B [22] 455 M2 (not plain text, only lighting

related lines)
Classical-B [23] 363 Sensors, PitmanController_v6,

PitmanController_TIME_v4,
GenericTimers, BlinkLamps_v3

Electrum [24] 155 AdaptiveExteriorLight_EU
(only lighting related lines)

REBEL2 244 Actuators, Input, Sensors, Timer

The system is split into three different subsystems: 1) Input
2) Sensors and 3) Actuators. The case also prescribes a
timing component: the direction lights must blink 60 times
per minute. This means that, when blinking, a full cycle (from
bright to dark) must be completed every second. REBEL2
does not support continuous time but it is possible to model
a Timer machine to simulate time at every step. This Timer

has a single invariant: time always flows forward with each
successive behavioral step of the system. The Timer can be
used to (partially) model the timing requirements stated in the
requirements.

Table I contains an overview of the different implementations
in terms of Source Lines of Code (SLOC), restricted to
the part that we have implemented. As can be seen in
Table I the REBEL2 specification is comparable with the other
implementations in terms of size, sitting between the Electrum
and ASM / Classical-B implementations.

Out of the 13 stated requirements for the direction indicators
and hazard warning lights the REBEL2 specification covers 11.
The two missing or impartial requirements (ELS-4 and ELS-6)
are concerned with modeling variants of the lighting system
for different markets (e.g., EU versus USA) and the timing of
the blink cycle when switching from tip-blinking to continuous
blinking. Table II provides an overview of the fulfillment of
the requirements of each implementation, as extracted from
cited papers and available code.

We specified 17 assertions to check relevant properties of
direction indicators and the hazard warning light. The initial
decomposition of the system into four separate specifications
(Actuators, Sensors, Input, Timer) facilitated checking local
properties of each specification. The full sensor values contain
more information than is needed to check the behavior of
the direction and warning lights, so they could be mocked
out. The mock state machine of Sensor only needed to specify
single value (whether or not the key was in the ignition on
position) to fully support the assertions, which resulted in a
model checking speedup of approximately 1.17x.

The case description also documented scenarios describing
the input and expected output values of all subsystems at a given
time. For instance, the direction indicator scenario contains
26 steps. This scenario was represented as a dedicated (linear)
state machine with 26 states, where each transition encoded

https://github.com/cwi-swat/rebel2/releases/tag/jan-2021

TABLE II: Fulfillment of direction blinking and hazard warning
lights requirements.

Method D.B.1 H.W.L.2 Remarks

ASMeta [21] No time management,
simulated via events. Blinking
frequency is missing.

Event-B [22] Blinking frequency is missing.

Classical-B [23] Presented solution only
addresses directional blinking
and hazard
warning lights.

Electrum [24] No time management. All
integer values are replace
by enumerations.

REBEL2 Variants (EU-USA) not
modelled. Time management
partially implemented.

1) Direction Blinking (ELS 1–7) 2) Hazard Warning Lights (ELS 8–13)

= Fully implemented

= Fully implemented with minor omissions

= Implemented but with omissions.

a step of the scenario. The events corresponding to the steps
capture the given sensor values and inputs as preconditions
and the expected output values as postconditions.

B. Case Study – Debit Card Lifecycle

This case study stems from the direct collaboration between
the authors and a large bank, and describes the lifecycle of
debit cards for payments or ATM withdrawals.7 The case
study involves three key REBEL2 specifications: DebitCard (97
SLOC), Limit (weekly withdraw limits; 45 SLOC), and Date
(full date specification, including leap years, day of the year,
and day of the week; 102 SLOC).

The specified assertions either check for desired behavior (e.g.
“Can a debit card be produced and activated?”) or check a safety
property (e.g. “A customer should not be able to use a debit
card after three failed PIN code attempts”). Per specification
the model checker was executed on a configuration without
mocked specifications and one with mocked specifications, for
a total of 9 different assertions. The benchmark was run on a
MacBook Pro (late 2015 model) with an Intel i5 processor and
8GB of RAM using Java version 11 (AdoptOpenJDK, build
2018-09-25), Rascal version 0.18.2 and Z3 version 4.8.8.

Table III shows the results of the experiment. All the
checks with mocked specifications complete faster than their
counterparts without mocked specifications, with an overall
speedup factor in the range of 2x–5x. Most phases of the
checking pipeline are faster with mocked specifications, except
the preparation phase. The phase that mostly benefits of
mocking is the solving phase. The speedup factor for this phase
is between 2x to 234x (not taking the checks that timed out
into consideration). Four checks (“CanAddOverrideAndCheck”,

7See https://github.com/cwi-swat/rebel2/releases/tag/jan-2021 in folder
examples/paper/debitcard for the REBEL2 encoding of the Debit Card case.

“CanOverdrawLimit”, “DebitCardCanBeProduced” and “Card-
CanExpire”) could not be checked with the configuration with-
out mocked specifications due to time-outs. Their counterparts
with mocked specifications could however be checked within
reasonable time.

As a proxy of the size of the explored state space, we report
on the number of declared SMT variables and SMT clauses.
Table III shows a decrease of the number of SMT variables and
clauses in the case of mocked specifications, which in turn all
have faster solving times. This data suggest that solving time is
related to the number of variables and clauses. This is, however,
not always the case since the “BlockedAfterThreeAttempts”
and “Max3WrongPinAttempts” assertions can still be solved
for the specifications without mocking while requiring more
SMT variables and clauses than “DebitCardCanBeProduced”
and “CardCanExpire”, which result in a time-out.

C. Discussion

We found that REBEL2 is expressive enough to implement
both case studies with the exception of the continuous time
aspect of the automotive case. This problem is not unique to
the REBEL2 language since other formalisms in this case study
exhibited the same constraint.

Next to the expressiveness of the language we evaluated the
effectiveness of mocking for model checking. We found that,
especially in the financial case study, mocking allowed for
the checking of properties that resulted in time-outs without
mocked specifications. This however comes at an expense:
using forget and mock makes model checking inherently
unsound. In other words, it is possible to validate a property
of interest in isolation, which will not hold when the system
is considered as a whole.

The unsoundness of forget and mock may seem undesirable
from the point of formal correctness, but lack of soundness
is accepted in many other areas of validation and verification.
For instance, the “small scope”-hypothesis (most bugs are
found in a small scope) is at the heart of light-weight formal
methods as, for instance, promoted by Alloy. Similarly, in
bug-finding and static analysis, it is well-known that many
analyses are inherently unsound [25], but that does not diminish
their usefulness. Finally, mocked specifications are similar to
mocked objects used for testing in object-oriented software
development [6]. Mocked objects often have different behaviors
than the actual objects they substitute for, but the benefit of
using them is widely acknowledged [26].

The forget and mock operators in REBEL2 are designed
to support a more flexible, conversational style of checking
properties, much like unit testing or property-based testing in
software development [27]. One way of stating this is: REBEL2
favors timely feedback over logical soundness.

Another added benefit of mock and forget is that having
language constructs specific for abstraction helps making the
applied abstractions needed for model checking explicit where
they would otherwise remain implicit for the unsuspecting
reader. In other words, a specification language without these
constructs expects the user to create abstract specifications in

https://github.com/cwi-swat/rebel2/releases/tag/jan-2021

TABLE III: Comparison between model checking with and without mocking for the Debit Card case. Reported times are the
found median in seconds after 10 runs.

Without mocking With mocking

Prep.
(sec.)

Norm.
(sec.)

Trans.
(sec.)

Solve
(sec.)

Total
(sec.)

#vars
(SMT)

#clauses
(SMT)

Prep.
(sec.)

Norm.
(sec.)

Trans.
(sec.)

Solve
(sec.)

Total
(sec.)

#vars
(SMT)

#clauses
(SMT)

CanInitializeLimit 4.4 4.5 9.2 23.4 41.5 314 715708 1.8 1.8 5.5 0.1 9.1 222 348399
CanAddOverrideAndCheck 4.2 4.8 23.1 t/o t/o 732 2144348 1.8 1.7 13.8 0.7 17.9 504 1045782
CantOverdrawLimit 4.6 4.8 40.9 t/o t/o 1150 3587839 1.8 1.7 22.9 2.7 29.1 786 1758738
LimitIsAlwaysPositive 4.2 5.1 33.3 2.1 44.6 941 2858968 1.8 1.7 18.4 1.2 23.1 645 1394935
AlwaysInSameCurrency 4.1 4.8 33.8 1.7 44.5 941 2858936 1.8 1.7 18.4 1.0 22.9 645 1394903
DebitCardCanBeProduced 6.4 10.3 68.3 t/o t/o 1471 8557656 8.5 3.3 23.9 0.6 36.3 883 641575
CardCanExpire 7.0 10.3 120.2 t/o t/o 2337 14258727 8.6 3.2 40.9 1.9 54.7 1405 1069529
BlockedAfter3Attempts 5.8 7.7 259.2 33.9 306.6 4502 28510441 9.6 3.4 88.1 3.8 104.9 2710 2137854
Max3WrongPinAttempts 5.9 7.9 264.8 36.5 315.2 4502 28510471 9.3 3.4 89.7 3.9 106.3 2710 2137884

t/o = Timed out after 10 minutes.

the first place, rendering it difficult for readers to see which
properties were abstracted from.

VI. RELATED WORK

Alloy is a popular lightweight formal specification language
based on relational logic with transitive closure [7], [14]. Alloy
allows for bounded model finding by translating specifications
to SAT formulas and utilizing an external SAT solver [16]. Like
REBEL2, the user specifies the bounds of a problem, which
are used during model finding. Because of Alloy’s generality
specifying behavioral problems (which require some sort of
transition system) requires an encoding in the relational logic
of Alloy.

Electrum extends Alloy with temporal operators [13] to
make such encodings more direct. The temporal operators can
be used to express safety and liveness properties and operate
over so called variable relations, relations whose contents can
change over time. DynAlloy [28], [29] is a dynamic logic-based
extension of Alloy, supporting partial correctness reasoning
via actions and action composition. The addition of actions
in DynAlloy obviates the need of an explicit encoding of
the transition system, but it does not offer support for LTL
formulas, which makes expressing liveness properties hard.

Both Electrum and DynAlloy can be used to model structural
and behavioral problems, but differ from REBEL2 in a
number of ways. First, since Alloy translates specifications to
SAT formulas it is hard to reason about non-relational data,
such as integers, reals, or strings. Since REBEL2 translates
it specifications to ALLEALLE which in turn utilizes an
SMT solver, REBEL2 offers native reasoning support in the
theories supported by the solver. Second, Alloy, Electrum and
DynAlloy support modularizing specifications using modules
and inheritance but lack the forget and mock mechanisms
of REBEL2. As a result, feasibility of checking properties is
relative to the full specification, rather than the property of
interest. We do believe however that both constructs could be
implemented in these formalisms.

Abstraction is a key mechanism to control for complexity.
In the context of formal specification this applies to both

complexity reduction for humans, as well as potential reduction
in the search space for automated proofs and model checking.
For instance, the specification language mCRL2 [3] offers
the primitives internal action or τ-step and the abstraction
operator (τI) for this purpose. Another approach, which lies at
the heart of formalisms such as Event-B [4] and ASM [30], is
the concept of refinement. The specifier starts with a high-level
specification of the system which is then gradually refined into
more detailed specifications. Each refinement step must be
proven to be correct via proof obligations which can have to
be discharged, either using automatic tool support, or manually
by providing a proof. REBEL2’s mock and forget can be seen
as similar operators to eliminate detail from a specification, in
order to make model checking more feasible.

Mocking is a compositional reasoning technique. These
techniques have a rich research history with seminal work of
Owicki and Gries [31] and Lamport in the 1970s [32]. Assume-
guarantee reasoning is a compositional reasoning technique
with resemblance to our described mocking technique [33].
With assume-guarantee reasoning components are checked
in isolation by assuming properties that must be guaranteed
by the rest of the system (the environment). Cobleigh et al.
introduced a method to automatically learn the assumptions
that should be guaranteed by the environment when verifying
a property on a single component [34]. With this technique
it is possible to automate a large part of assume-guarantee
reasoning. With mocking we aim for a similar goal: to be
able to check a component in isolation by supplying the
model checker with smaller, drop-in replacements of the
interacting components. These replacement components (i.e.
mocks) encode the assumptions that are needed to preform
the check in isolation. Like the earlier described abstraction
and refinement techniques, assume-guarantee reasoning is
fully sound. Mocking on the other hand is not. Next to that,
assume-guarantee reasoning can be mostly automated while
mocking requires manual effort by the specifier. However,
like discussed earlier, the flexible and unsound approach of
mocking does allow for a more pragmatic and conversational
style of interaction between the user and the model checker,

even allowing partial assumptions.

VII. CONCLUSION

In this paper we have introduced the specification language
REBEL2 which contains two language constructs, forget and
mock, which offer the possibility to apply mocking during model
checking. These two constructs allow the user to reduce the
state space that needs to be traversed by the model checker.
They can be used to redefine (parts of) the specification
during model checking without having to change the original
specifications. Users can specify the problem at hand without
worrying about the impact on model checking at design time,
but rather defer such concerns until actually checking a property
of interest. We conjecture that this makes REBEL2 suitable for
specifying industry-scale systems, such as those found in large
enterprises, while still being able to verify (parts of) a system
using model checking.

We have evaluated REBEL2’s expressiveness and the effec-
tiveness of model checking with mocking by implementing
two industrial case studies. In the first case study – originating
from automotive domain – we compared REBEL2 with exist-
ing solutions in alternative frameworks (ASMeta, Electrum,
Classical-B and Event-B). The results showed that REBEL2
can be used to specify such problems in roughly the same
number of lines code, and that applying the mock construct to
parts of the specifications sped up model checking by a factor
of roughly 1.17x. In the second case study we investigated the
effectiveness of model checking with and without mocking.
This case stemmed from the financial industry and was
conducted together with employees from a large bank and
showed that applying mocks while model checking improved
the overall checking times up to 5 times. In some cases it
made checking possible where performing the model checking
without mocking resulted in time-outs of the underlying solver.

There are many opportunities for further research including
1) extend REBEL2 to support deadlock detection, since this is
now an impediment to model checking; 2) implement different
slicing algorithms (e.g., [35]) and assess the impact in terms
of performance and soundness; 3) experiment with learning
mocks by incorporating the assumption learning techniques of
Cobleigh et al. used in assume-guarantee reasoning [34] and
4) provide empirical corroboration of the mocking hypothesis.

To summarize, REBEL2 is a formal specification language
aimed at large industrial enterprise settings, which brings the
concept of mocking to the world of formal methods, providing
faster model checking feedback when checking behavioral
properties of interest.

ACKNOWLEDGEMENT

We would like to express our gratitude to Rene Niekel of
ING for his collaboration and feedback.

REFERENCES

[1] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
model checking. Springer, 2018, vol. 10.

[2] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
checking. MIT press, 1999.

[3] J. F. Groote and M. R. Mousavi, Modeling and analysis of communicating
systems. MIT press, 2014.

[4] J.-R. Abrial and S. Hallerstede, “Refinement, decomposition, and
instantiation of discrete models: Application to event-b,” Fundamenta
Informaticae, vol. 77, no. 1-2, pp. 1–28, 2007.

[5] G. D. Dennis, “A relational framework for bounded program verification,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2009.

[6] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” Extreme programming examined, pp. 287–301, 2000.

[7] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[8] D. Jackson and J. Wing, “Lightweight formal methods,” FME 2001:
Formal Methods for Increasing Software Productivity, p. 1, 1996.

[9] J. Stoel, T. van der Storm, and J. J. Vinju, “Allealle: bounded relational
model finding with unbounded data,” in Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 2019, pp. 46–61.

[10] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[11] J. Stoel, T. v. d. Storm, J. Vinju, and J. Bosman, “Solving the bank with
rebel: on the design of the rebel specification language and its application
inside a bank,” in Proceedings of the 1st Industry Track on Software
Language Engineering, 2016, pp. 13–20.

[12] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha,
“State/event-based software model checking,” in International Conference
on Integrated Formal Methods. Springer, 2004, pp. 128–147.

[13] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight specification and analysis of dynamic systems with rich
configurations,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 373–383.

[14] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[15] P. Klint, T. van der Storm, and J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in SCAM. IEEE,
2009, pp. 168–177.

[16] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2007, pp. 632–647.

[17] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 26, no. 1, pp. 64–69, 1983.

[18] C. Date, An Introduction to Database Systems, 6th ed. Reading, MA,
Addison-Wesley, 1994.

[19] A. Cunha, “Bounded model checking of temporal formulas with alloy,”
in International Conference on Abstract State Machines, Alloy, B, TLA,
VDM, and Z. Springer, 2014, pp. 303–308.

[20] F. Houdek and A. Raschke, “Adaptive exterior light and speed control
system,” in International Conference on Rigorous State-Based Methods.
Springer, 2020, pp. 281–301.

[21] P. Arcaini, S. Bonfanti, A. Gargantini, E. Riccobene, and P. Scandurra,
“Modelling an automotive software-intensive system with adaptive features
using asmeta,” in International Conference on Rigorous State-Based
Methods. Springer, 2020, pp. 302–317.

[22] A. Mammar, M. Frappier, and R. Laleau, “An event-b model of an
automotive adaptive exterior light system,” in International Conference
on Rigorous State-Based Methods. Springer, 2020, pp. 351–366.

[23] M. Leuschel, M. Mutz, and M. Werth, “Modelling and validating an
automotive system in classical b and event-b,” in International Conference
on Rigorous State-Based Methods. Springer, 2020, pp. 335–350.

[24] A. Cunha, N. Macedo, and C. Liu, “Validating multiple variants of an
automotive light system with electrum,” in International Conference on
Rigorous State-Based Methods. Springer, 2020, pp. 318–334.

[25] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Communications of the ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[26] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “To mock or not
to mock? an empirical study on mocking practices,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 402–412.

[27] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[28] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre,
“Dynalloy: upgrading alloy with actions,” in Proceedings of the 27th
international conference on Software engineering, 2005, pp. 442–451.

[29] G. Regis, C. Cornejo, S. Gutiérrez Brida, M. Politano, F. Raverta,
P. Ponzio, N. Aguirre, J. P. Galeotti, and M. Frias, “Dynalloy analyzer:
A tool for the specification and analysis of alloy models with dynamic
behaviour,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 969–973.

[30] E. Börger, “High level system design and analysis using abstract state
machines,” in International Workshop on Current Trends in Applied
Formal Methods. Springer, 1998, pp. 1–43.

[31] S. Owicki and D. Gries, “Verifying properties of parallel programs: An
axiomatic approach,” Communications of the ACM, vol. 19, no. 5, pp.
279–285, 1976.

[32] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
transactions on software engineering, no. 2, pp. 125–143, 1977.

[33] O. Grumberg and D. E. Long, “Model checking and modular verification,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 3, pp. 843–871, 1994.

[34] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu, “Learning
assumptions for compositional verification,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2003, pp. 331–346.

[35] R. Eilers, J. Hage, W. Prasetya, and J. Bosman, “Fine-grained model
slicing for rebel,” in 2018 IEEE 18th International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 2018, pp.
235–244.

	Introduction
	Rebel2 by Example: Money Transfer
	Formalization
	Rebel2 Specification to LKS
	Semantics of the Forget Operator
	Semantics of the Mock Operator
	On the Logic of SE-LTL

	Implementation
	Step 1: Preparation
	Step 2: Normalization
	Step 3: Translation
	Step 4: Interpretation of the Result

	Evaluation
	Case Study – Exterior Lighting System
	Case Study – Debit Card Lifecycle
	Discussion

	Related Work
	Conclusion
	References

